硅灰对混凝土性能影响的研究进展

作者:山西嬴信科技有限公司发布日期:2021-03-08浏览次数:0

硅灰对混凝土性能影响的研究进展


摘要:混凝土的性能受各种因素的影响,尤其是具有活性的硅灰的加入,能很好的改进其性能并延长了其使用寿命,提高了工程质量。本文综述了硅灰及含有硅灰的混合掺料对混凝土耐久性与力学性能的影响,并展望了硅灰对改进混凝土性能的研究前景。


关键词:硅灰;混凝土;耐久性;力学性能


1引言


硅灰是硅铁合金厂和金属厂冶炼硅铁合金或金属硅时从烟尘中收集的一种飞灰。硅灰的年产量较大,若不能合理利用,直接排放到环境中,将对环境造成重大污染。因此近几年,硅灰的回收与利用,将硅灰变废为宝受到材料研究者的广泛关注。


混凝土是由胶凝材料,水和粗、细骨料按适当比例配合、拌制成拌合物,经一定时间硬化而成的人造石材。由于其具有良好的性能,且原料丰富,价格低廉已成为用途广并且主要的土木工程材料之一。在我国,通常将硅灰作为掺合料用于混凝土工业中,一方面可节约水泥熟料,降低混凝土的生产成本,有效减少环境污染,保护环境,另一方面硅灰具有很好的活性,能够很好的改善混凝土的性能,延长混凝土的使用寿命,提高工程质量。用硅粉配制高强混凝土的技术已相当成熟,并在挪威、日本、美国、澳大利亚等许多地方得到普遍应用。我国在上海等地区的越江隧道和房屋建筑中也已成功的应用了硅粉配制高强度混凝土,有的预制构件厂已用这种混凝土生产高强混凝土制品。付亚伟等研究认为,在混凝土中加入硅灰(5%~10%)能提高混凝土的流动性、填充性、稳定性、力学性能与耐久性,从而广泛应用于浇筑量大、浇筑深度深或浇筑高度大、钢筋密集、有特殊形状等振捣困难的混凝土结构工程中,给工程设计与施工带来极大的方便。因此,开发硅灰在混凝土中的应用,对促进节能减排、废弃物的资源化利用和保护环境、发展循环经济,以及建设资源节约型、环境友好型社会具有重要的现实意义,其技术、经济、效益显著,应用前景广阔。本文综述了近几年硅灰对混凝土性能影响的研究。


2硅灰改进混凝土性能的微观机理


与普通混凝土相比,含有硅灰的混凝土的主要特点之一是更均匀的微观结构。在低水胶比时,掺入硅灰,则水泥石中的微结构主要由结晶不良的水化物,形成低孔隙率的更加致密的基质构成。随硅灰含量增加,Ca(OH)2转变为硅酸钙水化物的量增加,也就是说,水泥石中的CH含量随硅灰掺量的增大而降低。剩余的CH与不含硅灰的硅酸盐水泥相比,易于形成更细小的晶粒。在普通硅酸盐水泥中掺入硅灰,水化物中Ca/Si减小,水化物能与其他离子结合,结果使水泥石抗离子侵入和抑制碱-骨料反应的能力提高。同时掺有硅灰的混凝土能使骨料周围充满致密的无定形的C-S-H相,从而使粗料与水泥石之间的界面过渡区得到明显改善。李建权等研究了含有10%的硅灰对水泥砂浆微观结构的影响,研究发现,水化28d后的试样总孔隙率较不加硅灰的提高了8%。同时硅灰与Ca(OH)2的火山灰反应分布也很均匀,没有集中在界面区域,而主要发生在浆体的毛细结构中,这在很大程度上堵塞了浆体内部的毛细结构,降低了孔隙率,提高了试样硬化后期的强度。


3硅灰对混凝土材料性能的影响


混凝土的性能主要包括物理力学性能和耐久性。物理性能主要包括混凝土的密实度、混凝土的渗透性、混凝土的干缩与湿涨,混凝土的热性能;混凝土的力学性能主要指混凝土的强度和变形性能,其中混凝土强度分为抗压强度、抗拉强度、抗弯强度及抗剪强度等。混凝土的耐久性指混凝土抵抗物理和化学侵蚀(如氯离子渗透、硫酸盐侵蚀、冻融等)的作用并长期保持其良好的使用性能和外观完整性,从而维持混凝土结构的安全、正常使用的能力。本文主要从混凝土的耐久性及其力学性能两方面研究分析混凝土的性能。


3.1硅灰对混凝土耐久性的影响


3.1.1硅灰对新拌混凝土性能的影响


新拌混凝土为水泥、水、集料及外加剂的混合物。新拌混凝土的性能既影响浇筑工程的质量又影响混凝土的耐久性。新拌混凝土的性能主要包括和易性和流变性。王振军研究发现硅灰能使混凝土拌合物的密实性增强,但是当硅灰的掺量达到4%以上时混凝土拌和物的黏聚性明显增加,流动性开始变差,研究表明较为合理的硅灰掺量为水泥总用量的2%。Duval等研究发现,在水灰比为0.35时,在停止搅拌后的0~50min内任何一个时间测得的坍落度都随着硅灰增加而增加。宋中南等研究发现,硅灰的掺量为6%时,混凝土的坍落度,扩展度都达到大值,即6%的硅灰能很好改进混凝土的流变性能。


3.1.2硅灰对混凝土抗渗透性的影响


混凝土材料的渗透性主要指液体和气体对其渗透的性质。抗渗性能高的混凝土,其耐久性就高,混凝土的抗渗性是表征其耐久性的一个重要指标。Song等通过硅灰对混凝土微观结构的影响理论分析与计算,提出了一种新的程序方法,很好的预测出硅灰对混凝土渗透性的影响,并通过实验验证了这一理论方法。他们计算出,在水胶比为0.4的条件下,硅灰替代比为8%到15%范围内,混凝土的渗透率几乎为零,但超过15%时,混凝土的渗透率又开始增加。通过对比不同水胶比下,硅灰对混凝土渗透性的影响,发现12%的硅灰替代比为佳硅灰替代比。与此同时硅灰的细度也会对混凝土的渗透性产生影响,如果细度增加,渗透性也会降低。另外渗透性的典型代表为氯离子的渗透性。Mohammad等研究了波斯湾的混凝土的抗渗透性发现无论水灰比为何值时,3、6、9个月的氯离子扩散率在硅灰替代比由0增加到7.5%时都显著降低,在7.5%时基本上达到小值。李凯等利用RCM法测定高性能混凝土氯离子扩散系数,对单掺硅灰和复掺粉煤灰和硅灰对混凝土抗氯离子渗透性能进行了研究。研究发现单掺硅灰的混凝土氯离子扩散系数较复掺粉煤灰和硅灰的混凝土氯离子扩散系数要小0.27×10-12m2/s,降低了25%,比不加任何掺料的混凝土降低了84%。这是因为硅灰的颗粒细度较小,比表面积大,能很好地填充到水泥浆体的空隙中,从而提高了混凝土的密实性,使得混凝土氯离子扩散系数较小,即硅灰能很好的提高混凝土的抗氯离子渗透性,增强混凝土的耐久性。


3.1.3硅灰对混凝土抗硫酸盐侵蚀性的影响


硫酸盐侵蚀是影响混凝土耐久性的又一重要内容,同时也是影响因素复杂、危害性大的一种环境水侵蚀。一般情况下,水灰比越小,密实度越大,硫酸盐溶液就越难侵蚀到混凝土内部,抗侵蚀能力就越强。硅灰的加入提高了混凝土的密实性,从而加强了混凝土的抗侵蚀性能。但是,不同的掺量会对混凝土抗侵蚀性产生不同的影响。Sokkary等研究了掺有硅灰的高铝水泥和普通波特兰水泥混合物的抗硫酸盐侵蚀性,研究发现当含有硅灰的高铝水泥量为15%,而普通波特兰水泥含量为85%时,其抗硫酸盐侵蚀性增强。Gzde通过测试混凝土硫酸盐扩散物的含量,研究了混凝土中添加硅灰对混凝土抗硫酸盐侵蚀的影响。以龄期为14周的测试结果为例,在Na2SO4溶液中,硅灰含量分别为0、5%、10%、15%时,混凝土硫酸盐的含量分别为0.09%、0.072%、0.06%、0.05%。即添加硅灰能显著提高混凝土抗硫酸钠溶液的侵蚀。然而在硫酸镁溶液中,硅灰含量分别为0、5%、10%、15%时,硫酸盐扩散物的含量分别为0.11%、0.083%、0.06%、0.06%,即在硅灰增加到15%时,硫酸盐扩散物的含量并没有减少。Lee等在水泥砂浆中掺入硅灰的量分别为0、5%、10%、15%,然后浸泡在5%的硫酸镁溶液中,用抗压强度损失率来评定水泥砂浆破坏程度。研究发现,随着硅灰的掺量由5%增加到15%,抗压强度的损失率不断增大,且抗压强度损失率都在40%以上,抗硫酸镁侵蚀性能逐步降低。因为硅灰代替了一部分水泥,发生了火山灰效应,减少了氢氧化钙的含量,使得镁离子更容易侵蚀混凝土内部,造成C-S-H的破坏。即硅灰并不能很好的提高抗硫酸镁侵蚀的能力。


3.1.4硅灰对混凝土抗冻融性的影响


许多水工混凝土建筑物所处环境都是正负温交替的,在使用过程中混凝土就会受到冻融循环的破坏作用而导致受冻破坏。特别是寒冷地区的水工建筑物,其混凝土抗冻性不足是造成结构破坏的主要原因,因此,解决混凝土材料的抗冻性是提高混凝土耐久性的一个重要途径。Cwirzen等测出水胶比为0.3时,56次冻融循环后,加入硅灰的混凝土表面缩放都在500g/m2以下,动态弹性模量都在90%以上,且相差不大。陈德玉等研究了硅灰和引气剂等改善再生混凝土抗冻性。实验采用5%、10%的硅灰等量替代水泥,探究硅灰对改善再生骨料混凝土抗冻性能方面的情况。研究发现,掺入硅灰的试件其相对动弹性模量下降值及下降趋势均小于对照试件(不掺硅灰)。到达300次冻融循环时,对照试件和掺入硅灰量分别为5%、10%的试件的相对动弹性模量分别为81.3%、92.1%、93.3%,同时在前100次冻融循环中,掺入硅灰的试件几乎无质量损失,在150~200次冻融循环内,质量损失才略有增加,冻融破坏比较轻微,而对照试件在100次冻融循环时质量损失已达到0.2%以上。吴泽媚等研究了硅灰对混凝土在不同浓度氯盐中抗冻性的影响,研究发现,不掺硅灰的混凝土在5%的氯盐中经过200次冻融循环后的质量损失为8.45%,相对弹性模量约为40%,而掺有硅灰的混凝土在相同条件下的质量损失不到2%,并且相对弹性模量基本不变,在90%左右。Assem等通过测试混凝土的脉冲传播速度发现在硅灰的含量由3%增加到8%时,脉冲传播速度减少率一直降低,且在210次冻融循环时,脉冲速度减少率约为15%,但当硅灰含量增加到11%时,在150次冻融循环时脉冲传播速度减少率就达到了70%以上。即硅灰改进混凝土抗冻融性的佳含量应在10%左右。


3.1.5硅灰对混凝土抗碱-集料反应的影响


碱-集料反应(alkali-aggregatereaction,AAR)是指在潮湿环境下,混凝土材料中的水泥、混合料和周围环境中的碱与集料中的活性成分在混凝土浇筑成型后若干年逐渐反应,反应生成物又吸水膨胀,从而导致混凝土膨胀开裂而失去设计性能的现象。AAR反应包括三种类型:碱-硅酸反应(ASR);碱-碳酸反应(ACR);碱-硅酸盐反应。Jan等认为硅灰作为一种高活性添加剂,在低的替代水平(8%~10%)下能很好的减少ASR扩张。于洋等利用砂浆棒快速法研究了硅灰对砂浆棒膨胀率的影响。研究发现,各掺量的硅灰均可使试样的膨胀率减小,且该膨胀率随硅灰的增加而不断下降,当硅灰掺量超过15%以后,试样14d的膨胀率小于0.10%,说明硅灰对AAR起到了很好的抑制效果。主要原因是掺入硅灰后,火山灰反应的发生,使水泥中的Ca(OH)2被大量吸收,形成了钙硅比低的C-S-H凝胶,而这样的C-S-H凝胶能呈现很强的吸收碱的能力,从而使水泥砂浆中的碱当量降低,减轻了碱对活性集料的侵蚀,抑制了碱硅酸反应引起的膨胀,从而达到了抑制AAR的效果。Andrew研究发现硅灰的聚集尺寸并不是引起ASR反应的因素,无论是大尺寸还是小尺寸,都降低了混凝土的扩张。Juenger等从硅灰的微观结构和聚集形态研究了硅灰对ASR的影响,发现只有含有烧结硅灰(聚集尺寸为150μm~4.75mm)的混凝土在14d时扩张长度变化竟然超过0.7%,不加硅灰的扩张长度变化不到0.4%,而其他聚集大小的硅灰混凝土扩张长度变化都小于不含有硅灰的,但彼此之间无明显差别。


3.2硅灰对混凝土力学性能的影响


强度是新拌混凝土硬化后的重要力学性质,也是混凝土质量控制的主要指标。研究发现,掺入硅灰能影响混凝土的强度(抗压强度,抗拉强度,弯曲强度)。Murat等认为硅灰的添加提高了混凝土的早期抗压强度,但是降低了混凝土的长期抗压强度。Tahir Gonen通过研究硅灰与粉煤灰及硅灰和粉煤灰混合物对混凝土抗压强的性能对混凝土抗压强度的影响发现,硅灰显著地提高了混凝土的抗压强度,且在28d时,混凝土的强度为72MPa。王洪等研究发现,在水胶比为0.3时,当硅灰的掺量在一定范围内(约为5%~9%)时,混凝土的抗压强度呈增长趋势。若同不掺硅灰的混凝土抗压强度对比,不管是7d还是28d的抗压强度,掺入3%的硅灰,混凝土的抗压强度基本没有变化;掺量大于9%后,混凝土的抗压强度呈下降趋势。掺入硅灰后,混凝土的劈裂抗拉强度总体同样呈增长趋势。硅灰掺量为6%时,7d、28d的,混凝土的劈裂抗拉强度比不掺硅灰的混凝土分别提高24%和16%。但当硅灰掺量超过6%后,不管是7d还是28d的劈裂抗拉强度,都开始呈下降趋势。可见在水胶比为0.3时,硅灰掺量6%左右,对提高混凝土的劈裂抗拉强度是非常有利的。Bhanja等专门研究了在水胶比从0.26变化到0.42时,硅灰独自存在对混凝土强度的影响。研究发现,硅灰对混凝土抗压性能影响的佳替代比不是一个定值,与水胶比有关,但是在15%~25%范围之内。对于劈裂抗拉强度来说,硅灰的掺入虽然增加了混凝土的劈裂抗拉强度,但是很高的硅灰替代比并不是影响劈裂抗拉强度的主要因素,并且硅灰替代比不会超过15%。并且所有的水胶比下,5%~10%的硅灰替代比都显著的提高了混凝土的劈裂抗拉性能。对于弯曲抗拉强度来说,硅灰显著提高了混凝土的弯曲抗拉强度,甚至高的硅灰替代比效果更明显,在硅灰替代比为5%、10%、15%、20%和25%下,分别计算出所有水胶比下,28d的弯曲抗拉强度的平均增长率为10.2%、14.5%、27%、31%和26.6%。由此可见硅灰替代率为20%左右时显著提高混凝土的弯曲抗拉强度。


4复合掺料对混凝土性能的影响


一种掺料的性质是单一的,将两种或两种以上的掺料混合在一起形成具有多种性质的复合掺料,也许能的改进混凝土的性能,例如:复掺粉煤灰和硅灰。硅灰属火山灰质材料,其颗粒极细(<1μm),且具有高度分散性,具有填充效应、火山灰效应和孔隙溶液化学效应。将矿物掺合料复掺后会产生各组分之间的物理及化学复合效应,主要表现为火山灰复合效应和微集料复合效应,对混凝土的渗透性、过渡带结构、抗裂性能等均有良好的改善作用,从而使混凝土的抗硫酸盐侵蚀作用显著改善。因此近年来许多学者探究了复合掺料对混凝土性能的影响。张笑等探究了硅灰和超塑化剂掺量对高性能混凝土强度及流动性的影响,研究发现高性能混凝土的优配比应为硅灰替代率10%,超塑化剂掺量1.1%,此时混凝土28d的抗压强度为92.7MPa,扩展度170mm。唐明等通过混料设计,研究了同一水胶比下水泥、矿渣、粉煤灰和硅灰混料因子对混凝土7、28d抗压强度和28d电通量的影响,通过多元回归分析,综合考虑,粉煤灰掺量和矿渣掺量应都为50%。周述光等研究发现粉煤灰、硅灰和引起剂复合使用时能够抑制ASR,当砂浆中只加入10%的粉煤灰,5%的硅灰时,24h后的膨胀率为0.18%,而还加有0.04%引气剂的砂浆24h后的膨胀率仅为0.08%,即三种复合时效果更明显。


5结语


由于硅灰具有良好的活性,其添加到混凝土中能很好的改进混凝土的性能。但是影响混凝土性能的因素复杂,因此很难确定一个改进混凝土综合性能的佳硅灰替代比。所以未来利用多元回归分析的方法研究硅灰对混凝土综合性能的影响,提出硅灰改进混凝土综合性能的佳替代比将成为未来的研究方向。


关键词:

1 引言


粉煤灰开发利用是固体废弃物处理的一个主要方面,开发利用好粉煤灰,不仅能够有效解决环境污染问题,而且还能变废为宝。我国粉煤灰排放量超过1 亿t/年,占地面积约2.6 万公顷,而且随着火电建设的高速发展,粉煤灰排放量将逐年增加。我国粉煤场,不仅占用大量土地,而且对周边环境造成严重威胁。[1]


目前,粉煤灰的综合利用主要集中在高掺量粉煤灰烧结砖及建筑砌块、用作掺合料生产粉煤灰水泥和混凝土、在工程回填中作填料、生产漂珠及用作土壤改良、在砂浆中代替部分水泥等。如何使粉煤灰的火山灰活性被激发出来,提高粉煤灰在建材中的利用率,并且获得由较好的早期强度的混凝土就成了目前面临的问题。


2 机械粉磨活化


2.1 活化机理


粉磨使粉煤灰的颗粒细化,破坏了阻碍粉煤灰火山灰效应的颗粒表层坚硬密实的玻璃质外壳,增加参与火山灰效应的表面,有利于Ca2+离子渗透和玻璃体中硅、铝的溶解。从微观角度讲粉磨能促使粉煤灰颗粒原生晶格发生畸形、破坏,切断网络中Si-O键和Al-O键,生成活性高的原子基团和带电荷的断面,提高结构不规则和缺陷程度,反应活性增大从能量角度讲粉磨能提高粉煤灰颗粒的化学能,增加其化学不稳定性,使活性增加。[2]


2.2 助磨剂


粉磨过程是能耗高的环节,能量利用率又极低,只有很少一部分被用于增加物料的比表面积。为了提高粉磨效率,可以在粉磨过程中添加化学药剂, 因新生颗粒表面存在电价不平衡,硅氧负离子容易与空气中的水提供的氢离子结合,并通过氢键的生成而发生颗粒粘连,而表面活性剂含有亲水和亲油基团,当它和新生颗粒表面接触时,亲水基团吸附在颗粒表面,疏水基团向外,就能阻碍颗粒之间的吸附,表现出一定的助磨效果[3]。


采用加入助磨剂和不加助磨剂粉磨的方法对粉煤灰性能做对比试验,试验中加入以二甘醇、三乙醇胺等为成份的复合助磨剂。

图片
图片
图片


图1、图2、图3为粉煤灰原灰、经过粉磨(未加助磨剂)的粉煤灰及加助磨剂粉磨后水化XRD图。图中可以看出,经过粉磨的粉煤灰的SiO2的强度明显低于粉煤灰原灰,表明经过粉磨的粉煤灰已得到活化。


由图2的XRD可以看出图中出现了水化硅酸钙、钙矾石、水化铝酸钙等活化产物,由于在混合磨细的过程中未掺加助磨剂,所以物料无论从细度还是从均匀程度上讲都不甚理想,所以导致在后期的水化过程中其活性没有被充分的激发出来,在强度上稍低。


图3的XRD可看出图中出现了钙矾石、水化铝酸钙、水化硅酸钙、石灰石等活化产物,在本样品中,分别采用了浮选法除碳、掺加助磨剂的混合磨细等工艺,消除了前两种样品在制备中的不利因素,汲取了它们在制备中混合磨细和浮选法除碳对物料的细度和均匀性以及对粉煤灰中残碳的选除的有利因素,所以其活性比较充分的被激发出来,更有利于能增强其强度的水化产物的生成,其强度也较前一种试样为大。


图片
图片


图4和图5分别为不同倍数下的未加助磨剂粉磨和加助磨剂粉磨后水化SEM图,


从图4中可以看出在低放大倍数情况下粉煤灰得到活化,且呈珊瑚状,粉煤灰中玻璃体的Si-O键和Al-O键被OH-破坏,可以看到在颗粒表面被大量的水化产物所覆盖;在高放大倍数下可以进一步看到水化产物的形貌简单,只有少量的水化产物结晶,而样品的结晶状态是产生强度的决定因素,所以决定了该样品的抗压强度较低。


从图5中可以看出有一定的层状分布水化产物,这些层装分布的水化产物是粉煤灰中的玻璃体的Si-O键和Al-O键被OH-破坏后形成的,同时还有一些的片层状物质,这些片层状物质为Ca(OH)2,是提供激发所需的OH-的主要物质,同时又为形成水化产物是提供了Ca2+使试样的强度得到提高。并且从试样的SEM图可以很明显的看出试样中的粉煤灰堆积较密,气孔率较小,并且试样中被激发的粉煤灰占到了相当大的比例。


3 化学激发


常用的粉煤灰的化学激发方法有酸激发、碱激发、硫酸盐激发、氯盐激发和晶种激发等。Ca2+是形成胶凝性水化物的必要条件,而由于粉煤灰与水泥相比,粉煤灰中含的CaO量非常低,所以在所有的激发方法中,首先必须提供充足的Ca2+ [12]。


3.1 酸激发


粉煤灰的酸激发是指用强酸与粉煤灰混合进行预处理,然后陈放一段时间。通过强酸对粉煤灰颗粒表面的腐蚀作用,形成新的表面和活性点。相关研究资料表明,在SEM 下可以看到,经过强酸处理过的粉煤灰颗粒表面形成了许多腐蚀坑,XRD 图谱也表明,强酸处理后的粉煤灰中石英和莫来石衍射峰都有明显的下降。采用34mL 当量浓度0. 5Mol/L 的硫酸处理粉煤灰:石灰:石膏为8.4: 3:0.6 的体系,可以将其7d 强度由18MPa 提高到22MPa.


3.2 硫酸盐激发


常见的硫酸盐激发剂有芒硝和石膏(包括二水石膏、半水石膏、硬石膏和煅烧石膏),Na2SO4 的激发效果优于CaSO4 类,在CaSO4 类激发剂中,一般激发效果从高到低为:煅烧硬石膏,二水石膏,半水石膏,硬石膏[3]。硫酸盐对粉煤灰活性的激发主要是SO42-在Ca2+的作用下,与溶解于液相的活性A12O3 反应生成水化硫铝酸钙AFt,即钙矾石。反应式为:

图片

部分水化铝酸钙也可与石膏反应生成 AFt:

图片

王智等[5]人则认为,SO42-也能置换出C-S-H 凝胶中小部分的SiO44-,置换出的SiO44-在外层又与Ca2+作用生成C-S-H,促使水化反应进行。而SiO44-的存在又促进活性A12O3 的溶出。同时,SO42-还可以吸附于玻璃体表面A13+网络中间体活化点上,发生作用,使Al-O 和Si-O 键断裂。而且SO42-可以少量固溶于C-S-H 凝胶或被其吸附,从而改变C-S-H 的透水性,加速C-S-H 的形成.另一方面SO42-生成的CaSO4 和AFt 均有一定的膨胀作用,可以填补水化空间的空隙,使浆体的密实度提高,起到补偿收缩的作用。


3.3 碱激发


粉煤灰主要成分是酸性氧化物,呈弱酸性,因而在碱性环境中其活性容易被激发。粉煤灰玻璃体的网络结构比较牢固,因此粉煤灰活性激发的关键是如何使Si-O 和A1-O 键断裂。早期研究表明, Si-O 和A1-O 的断裂主要受OH 浓度的影响。在OH-的作用下,粉煤灰颗粒表面的Si-O 和A1-O键断裂。Si-0-A1 网络聚合体的聚合度降低,表面形成游离的不饱和活性键,容易与Ca (OH)2 反应生成水化硅酸钙和水化硅酸铝等胶凝性产物。OH-浓度越大,其对Si-O 和A1-O 键的破坏作用就越强[6]。李纪青等[7]认为, Ca(OH)2 从过饱和溶液中析出的细小Ca(OH)2 晶体也可以吸收一部分水化凝胶,形成粉煤灰颗粒外部的水化产物,从而减小了粉煤灰颗粒的水化包裹层厚度,有利于Ca2+向内层扩散和粉煤灰颗粒内部的水化反应的进行。实验表明1:3 的石灰砂浆的抗压强度只0.4~0.6MPa,而用III 级灰配制的粉煤灰一石灰砂浆的强度可达到2.5MPa,即使使用80m 筛余为50~60%的劣质粉煤灰,抗压强度也能达到0.8~1.6MPa.


3.4 复合类激发剂


铝硅酸盐玻璃体在碱性环境中,才能表现出活性。为了提高粉煤灰混凝土的早期强度,必须激发粉煤灰的活性,而粉煤灰活性激发的关键是使Si-O 和Al-O 键断裂, Si-O 和Al-O 键的断裂主要受OH-浓度的影响[8]。采用碱激发和硫酸盐激发的复合化学激发方法,促使粉煤灰玻璃体解聚,腐蚀粉煤灰颗粒表面,促使Si-O 和Al-O 键断裂以及颗粒表面的蜂窝化,从而提高粉煤灰与Ca(OH)2 的水化进程。同时,还要满足对粉煤灰混凝土耐久性和体积稳定性的要求,必须对掺入的总碱量进行定量控制。根据这样的原则,一般选用熟石灰Ca(OH)2(碱激发)和芒硝(Na2SO4·10H2O)(硫酸盐激发)对粉煤灰的活性进行复合激发[9]。


4 复合活化


粉煤灰中虽然含有大量的铝硅酸盐玻璃体,但是其中SiO44-聚合度高,结构致密,化学性质稳定,其火山灰活性大部分是潜在的,活性发挥的速度非常缓慢[10]。故在实际应用时,需综合物理和化学的激活方法,即复合激活。一般来说,复合激活的效果要优于单个工艺激发。表1为通过机械粉磨活化、添加激发剂活化、机械粉磨和添加激发剂复合活化方法下的试样强度结果,从中可以看出复合激活的效果具有明显的优越性。

图片


5 展望


根据我国国民经济和社会发展“九五”计划与“2010 年远景目标纲要”,调整建材工业结构的要求。以粉煤灰这种工业固体废弃物作为建筑材料为出发点开发出节约能源、节约土地、节约用水及减少污染新型建筑材料,提高粉煤灰的利用率,实现建筑工业与建材工业的可持续发展,促进经济、环境、资源、人口和社会协调发展。要实现大量甚至全部利用粉煤灰,关键的便是大程度地激发粉煤灰的活性,各种激发方法的综合使用将会成为以后粉煤灰利用的焦点。


自保温砌块 自保温砌块 自保温砌块 自保温砌块 自保温砌块 自保温砌块